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ABSTRACT

With the rapid accumulation of high-throughput mi-
croRNA (miRNA) expression profile, the up-to-date
resource for analyzing the functional and disease as-
sociations of miRNAs is increasingly demanded. We
here describe the updated server TAM 2.0 for miRNA
set enrichment analysis. Through manual curation
of over 9000 papers, a more than two-fold growth
of reference miRNA sets has been achieved in com-
parison with previous TAM, which covers 9945 and
1584 newly collected miRNA-disease and miRNA-
function associations, respectively. Moreover, TAM
2.0 allows users not only to test the functional and
disease annotations of miRNAs by overrepresen-
tation analysis, but also to compare the input de-
regulated miRNAs with those de-regulated in other
disease conditions via correlation analysis. Finally,
the functions for miRNA set query and result visual-
ization are also enabled in the TAM 2.0 server to facili-
tate the community. The TAM 2.0 web server is freely
accessible at http://www.scse.hebut.edu.cn/tam/ or
http://www.lirmed.com/tam2/.

INTRODUCTION

MicroRNAs (miRNAs) are endogenous small RNAs that
play versatile regulatory roles in cell proliferation, devel-
opment and metabolism by targeting other genes (1). An-
alyzing the involvement of miRNAs becomes increasingly
important not only for understanding the molecular mech-
anisms of physiology and pathology but also for discov-
ering novel clinical biomarkers and therapeutic targets of
complex diseases like cancer and cardiovascular diseases
(2–5). With high-throughput transcriptome profiling tech-
niques like microarray and RNA-seq, one could easily ob-
tain a list of de-regulated miRNAs. Methods to interpret
the functions of these de-regulated miRNAs are therefore
demanded. Enrichment analysis has been widely applied to

interpret de-regulated coding genes, proteins or microbiota
(6–8). Similarly, miRNA set enrichment analysis, which
compares the query miRNA list with the reference miRNA
sets to infer functional and disease associations, has been
increasingly required in the pipeline of high-throughput
miRNA assays (9).

Intuitively, the usefulness of an enrichment analysis tool
heavily depends on the quality and coverage of its refer-
ence miRNA sets. Because the annotations of miRNAs are
less comprehensive than those of coding genes, one solution
would be to deduce the function of miRNAs from the func-
tions of their target genes. Indeed, several available tools
implemented such target gene-based miRNA enrichment
analysis, e.g. miRWalk 2.0 (10,11) and DIANA-miRPath
v3.0 (12). Nevertheless, due to the promiscuity of miRNA
targeting, one miRNA could be related to hundreds of
genes and therefore to many weakly associated functional
terms, which finally results in unsatisfactory quality of
miRNA sets and biased analysis results (9,13). The alterna-
tive choice is to directly compile the miRNA sets through
manually curation. Manually curated annotations suffer
from the publication bias (e.g. cancer is much more inten-
sively investigated than others) and inaccuracy (e.g. some
molecular phenotype could be artefact resulted from exper-
iment design). Nevertheless, it is still a well-accepted way to
obtain miRNA-disease associations (14,15). In 2010, we es-
tablished a miRNA set enrichment tool TAM (16), which
was based on our miRNA-disease association database
HMDD (14) and literature reading. After two rounds of
updates, the TAM tool covered 362 miRNA sets, includ-
ing 43 miRNA-function sets and 183 miRNA-disease sets,
and became one of the most popular miRNA set enrich-
ment analysis tool. However, since the manual literature
reading is labor-intensive, the available tools often promi-
nently shared their curated miRNA sets albeit their statis-
tical methods would differ. The miSEA server (http://www.
baskent.edu.tr/~hogul/misea/) implemented distinct statis-
tical method than TAM, but its reference miRNA sets
largely overlapped with those of TAM, with noticeable ex-
ception of ∼200 newly curated miRNA-disease sets that
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provided important adding value (17). The miEAA server
(http://www.ccb.uni-saarland.de/mieaa tool/) was the most
up-to-date tool with significantly improved functionality
than TAM (18). Nevertheless, the reference miRNA sets of
miEAA were enriched by target-derived functional annota-
tions while the manually curated, miRNA-oriented anno-
tations were not significantly improved (e.g., for miRNA-
disease sets, miEAA used HMDD annotations only).

To overcome the challenge in the curated reference
miRNA sets, we performed extensive manual literature
reading and established the updated TAM 2.0 server. From
over 9000 papers, we compiled 547 miRNA-disease and 158
miRNA-function sets, which resulted in the most compre-
hensive manually curated miRNA sets to our best knowl-
edge. Moreover, we also performed in-depth curation of
miRNA-disease associations by discriminating the disease
promoting (or disease activated) miRNAs and disease sup-
pressing (or disease inhibited) miRNAs. This curation strat-
egy enables a new function of TAM 2.0, which compares the
positive/negative correlation between de-regulated miR-
NAs between different conditions. Such correlation would
provide more useful information for biomedical application
(e.g. negative correlation would imply a protective effect
against disease). Finally, to facilitate users, the miRNA set
query function and graphical visualization of results were
also added to our updated TAM 2.0 web server.

METHODS

Collection of miRNA sets

TAM 2.0 contains six types of miRNA sets: family, clus-
ter, tissue specificity, disease, function and transcription fac-
tor (TF). Except the tissue specificity sets which had been
derived from a comprehensive miRNA transcriptome atlas
(16) when building previous TAM, the transcription factor
sets were newly added, while other four types of miRNA
sets were significantly updated in TAM 2.0 (Figure 1A).
The miRNA-family sets were obtained from the updated
miRBase annotations (http://www.mirbase.org/; version 21,
queried in June 2017) (19). The miRNA cluster was defined
as miRNAs grouped within 50 kb on the chromosome (ac-
cording to the genomic coordinates provided by miRBase),
following previous publication (20). The newly added TF-
miRNA sets incorporated the TF-miRNA regulation pairs
from the TransmiR (21) and mirTrans (22) databases. The
disease and function miRNA sets were compiled through
manual literature reading. We searched the PubMed with
the keyword ‘Human microRNA’ OR ‘Human miRNA’,
and limited the publication date from January 2014 to Octo-
ber 2017, as the publications before 2014 have been largely
covered by previous TAM and HMDD database. We noted
that many publications did not specify the mature miRNA
(with -3p or -5p suffix) or duplicated miRNA genes (with
-1 or -2 suffix). For better compatibility and coverage of the
publication data, all miRNA set assignments were limited
to the miRNA gene (pre-miRNA) level and there was no
discrimination between mature miRNAs from the same pre-
miRNA. Mature miRNAs were collapsed into the corre-
sponding miRNA genes. And for duplicated miRNA genes,
the disease or function term was assigned to all of them if

the exact miRNA gene name was not specified in the publi-
cation. The disease and functional terms were summarized
from the overrepresented keywords in the abstracts of the
curated publications. During data curation process of TAM
2.0, we also managed to: (i) align the nomenclatures of dis-
ease and functional terms to the ICD-10-CM (https://www.
cdc.gov/nchs/icd/icd10cm.htm), Disease Ontology (http:
//disease-ontology.org), MeSH (https://www.nlm.nih.gov/
mesh), OMIM (http://omim.org), Human Phenotype On-
tology (http://human-phenotype-ontology.github.io) and
Gene Ontology (http://www.geneontology.org) approved
synonyms, respectively, if applicable (see also Supplemen-
tary Table S1); (ii) merge or remove 98 ambiguous and re-
dundant miRNA sets; (iii) discard miRNA genes unmap-
pable to the miRBase release (version 21). Moreover, for
miRNA-disease associations, we also classified miRNAs
that were up-regulated in disease condition, or exhibited
disease promoting function according to the phenotype
from gene permutation assays. as the up-miRNA set of the
disease. The down-miRNA set of the disease was curated
in the same way. Such curation strategy is essential for our
new comparison function in TAM 2.0. Finally, we discarded
all miRNA-disease/function sets smaller than two miRNAs
because these miRNA sets were often of worse quality.

Statistical analysis

To test if the input miRNAs are over- or under-represented
in one miRNA set, the overrepresentation analysis is per-
formed for each set. More specifically, a hypergeometric P-
value was calculated based on the method identical to the
previous version of TAM (16), i.e.:
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S∑

x=I S
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Where I, S and IS represent the number of input miRNAs
(covered by TAM 2.0), the number of miRNA in the tested
miRNA set, and the number of miRNAs present in the in-
tersection between the input and the tested miRNA set, re-
spectively. The T is the total number of miRNAs covered by
TAM 2.0.

For users who provide both up-regulated miRNAs and
down-regulated miRNAs, TAM 2.0 could also compare
these miRNAs with de-regulated miRNAs in other disease
conditions, by using the previously established correlation-
based method (23,24). This comparison is also partly in-
spired by the Connectivity Map project, where the corre-
lation between transcriptome changes is utilized for drug
repurposing (25). First, the lists of de-regulated miRNAs
were transformed into a vector of association scores. The
vector length was fixed to the total number of de-regulated
miRNAs among all diseases, Tc. And in this vector, the as-
sociation score di,j between miRNA j and condition i reads

di. j = δi jwi j ln
(

Nd

n j

)
( j = 1, ..., Tc) (3)

http://www.ccb.uni-saarland.de/mieaa_tool/
http://www.mirbase.org/;
https://www.cdc.gov/nchs/icd/icd10cm.htm
http://disease-ontology.org
https://www.nlm.nih.gov/mesh
http://omim.org
http://human-phenotype-ontology.github.io
http://www.geneontology.org


W182 Nucleic Acids Research, 2018, Vol. 46, Web Server issue

Figure 1. The overview of TAM 2.0 web server. (A) The comparison of miRNA set numbers in different categories, among the miRNA set enrichment
analysis tools. (B) The workflow of TAM 2.0. Depends on the input, TAM 2.0 provides three major functionalities: (i) miRNA set query; (ii) overrepresen-
tation analysis and 3) comparison between de-regulated miRNAs. All of these functionalities rely on the significantly updated curated reference miRNA
sets of TAM 2.0.

In the above equation, the raw association δi,j has three
possible values, +1 for up-regulated (or disease promoting)
miRNAs, –1 for down-regulated (or disease suppressing)
miRNAs, and 0 for miRNAs that are not de-regulated. The
wi,j is the number of references supporting the association
(for input miRNA lists, wi,j equals to 1). The last term cor-
rects the specificity of association, where nj is the total num-
ber of diseases associated with miRNA j and Nd is the total
number of diseases to be compared. Together, di,j encodes
the weighted signed association score between miRNA j
and condition i. Then the association score vectors of the
input l and disease s could be compared by using cosine cor-
relation as:

Correlation(l, s) =

Tc∑
j=1

dl, j · ds, j√
Tc∑

m=1
d2

l, j ·
√

Tc∑
m=1

d2
s, j

(4)

Server construction

The web server was established in the ‘Linux + Apache +
MySQL + PHP’ framework. The data visualization (bar
plots, bubble plots and heatmaps) was implemented by
using open source G2 package (https://github.com/antvis/
g2/).

RESULTS

Overview of TAM 2.0 server

Currently, the reference miRNA set annotations in TAM
2.0 are constituted by 151 miRNA-family sets, 211 miRNA
cluster sets, 547 miRNA-disease and 158 miRNA-function
sets, 166 miRNA-TF sets and 6 tissue specificity sets. As de-
picted in Figure 1A, the number of miRNA sets were signifi-
cantly increased in TAM 2.0, compared with previous TAM
versions. And the coverage of the curated miRNA-function
sets and miRNA-disease sets was also improved compared
with those used by miSEA and miEAA (whereas miEAA

used massive target gene-deduced miRNA-function sets in-
stead of manually curated miRNA-function sets). The in-
creased amount of miRNA sets in TAM 2.0 was not sim-
ply resulted from aggregation of uncommon miRNA sets.
Instead, the average number of miRNAs per set was in-
creased from ∼10.9 in TAM to ∼13.9 in TAM 2.0, indi-
cating that more comprehensive miRNA associations are
recorded in TAM 2.0. Finally, for more than half (445 out
of 547) of miRNA-disease sets, we could discriminate up-
miRNAs and down-miRNAs, which supports the condition
comparison function of TAM 2.0 described later.

The workflow of TAM 2.0 is shown in Figure 1B. De-
pends on the input, TAM 2.0 provided three major func-
tions. First, if users input a miRNA name or a keyword of
miRNA set, a miRNA query function is provided in the
‘Query’ page of the server (Figure 2A). After first round
of query, users can perform a filtration of the query results
by clicking the toggle switches of miRNA set categories,
or by inputting additional keywords. Second, if users sub-
mit a list of miRNAs, an overrepresentation analysis is per-
formed via the ‘Analysis’ page. The tabular result is firstly
provided (Figure 2B). For each associated miRNA set, users
can click the [details] link to view the PubMed reference
list supporting the association and the cross-refence of the
miRNA set term to other public databases like ICD-10-CM
and Gene Ontology. Users can also click the ‘Result Visual-
ization’ button to the top of tabular result for generating
custom graphical results. The bar plots and bubble plots
(Figure 2C and D), together with a heat-map showing the
detailed miRNA set associations (Supplementary Figure
S1), will be provided. Third, if users have both up-regulated
miRNAs and down-regulated miRNAs, a comparison with
de-regulated miRNAs in other diseases is enabled in the
‘Comparison’ page. And the comparison results include a
bi-color bar plot illustrating the correlations between de-
regulated miRNAs (Figure 2E) and a heatmap summariz-
ing the up- and down-miRNAs in other diseases (Supple-
mentary Figure S2). All of the above analysis could typi-
cally be finished within 30 seconds unless the input miRNA
list is large (>300 miRNAs).

https://github.com/antvis/g2/
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Figure 2. The sample results of TAM 2.0 web server. (A) The sample miRNA set query results. (B) The sample tabular view of the overrepresentation
analysis results. (C) The sample bar plot illustrating the top 10 significant miRNA-function associations of the input sepsis miRNA biomarkers. (D)
The sample bubble plot illustrating the top 10 significant miRNA-disease associations of the input sepsis miRNA biomarkers. (E) The sample bar plot
illustrating the correlations between de-regulated miRNAs after metformin intervention and those in other disease conditions, only the top 10 diseases are
shown.

Example for using the overrepresentation analysis

We exemplified the results of overrepresentation (enrich-
ment) analysis of TAM 2.0 with the known miRNA
biomarkers of sepsis, a severe systemic inflammatory re-
sponse syndrome that causes massive death worldwide.
Nine miRNA biomarkers for sepsis were recently summa-
rized by Dumache et al. (26). A sample screenshot of tabular
results is shown in Figure 2B. The full list of miRNA-set as-
sociations can be downloaded by clicking the ‘Text files of
results’ button on the server. In this tabular view, user can
move mouse over one miRNA set term to view and save
the related miRNAs. User can also click the [details] link
asides each term to view the cross-reference of this term and
references supporting the miRNA-term associations. The
significant disease and functional association of the sepsis
miRNA biomarkers are shown in Supplementary Table S2.
The ‘Sepsis’ disease term (FDR = 4.63E–10) and closely re-
lated ‘Inflammation’ (FDR = 3.91E–6) and ‘Immune Sys-
tem’ function terms (FDR = 5.88E–6) are of the top signif-
icance. And some immune- or inflammation-related disease
terms like ‘Multiple Sclerosis’, ‘Psoriasis’, ‘Systemic Lupus
Erythematosus’, ‘Autoimmune Diseases [unspecific]’, ‘Im-
mune Thrombocytopenic Purpura’, ‘Chronic Hepatitis B’,
‘Osteoarthritis’, ‘Human Immunodeficiency Virus Infec-
tion’, ‘Tuberculosis, Pulmonary’ and ‘Rheumatoid Arthri-
tis’ are also overrepresented. We also noted the signifi-
cant associations with multiple cancer-related disease terms
and the ‘Onco-miRNAs’ function term, which would im-
ply plausible relationship between inflammation and can-
cer. Indeed, some miRNAs like has-mir-223 could link the

mechanisms between inflammation and cancer (27), and
this miRNA is also a known sepsis biomarker (26). Be-
sides the tabular view, graphical visualization of the result
is also available. By clicking ‘Result Visualization’ button
(Figure 2B), the bar plot and the bubble plot could be gen-
erated with customized parameters (Figure 2C and D). In
addition, a heatmap depicting the holistic view of miRNA-
disease/function associations is also provided (Supplemen-
tary Figure S1). Finally, TAM 2.0 also permits analyz-
ing up-/down-miRNAs separately. Supplementary Table
S3 lists the results when up-/down-miRNA analysis func-
tion is enabled. Interestingly, the sepsis miRNA biomarkers
are enriched for up-miRNAs in ‘Sepsis’ and ‘Rheumatoid
Arthritis’, whereas they are enriched for down-miRNAs in
‘Systemic Lupus Erythematosus’. This result indicates that
these miRNAs may play distinct roles in different immune-
related diseases, which could not be observed without the
up-/down-miRNA analysis newly available in TAM 2.0.

We also compared the TAM 2.0’s analysis results with the
results from the most up-to-date published miRNA set en-
richment tool miEAA (18). Similar to TAM 2.0, miEAA
would accept a simple list of miRNA genes (precursors),
whereas some other server required more specialized inputs
(17). The overrepresentation analysis results of miEAA are
shown in Supplementary Table S4. Indeed, miEAA also
captured some important associations with immune- or
inflammation-related disease terms such as ‘Sepsis’, ‘Pso-
riasis’, ‘HIV Infections’ ‘Multiple Sclerosis’ and ‘Hepatitis
B’. Nevertheless, the overall disease associations of miEAA
are less comprehensive than TAM 2.0, and there is no func-
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tional association provided by miEAA at the miRNA gene
(precursor) level. Give the two tools adopted identical hy-
pergeometric test method for overrepresentation analysis,
this distinction should be mostly resulted from the differ-
ence in the coverage of curated miRNA sets. Moreover, we
also tried to use the mature miRNA names (transferred by
miEAA) as the input to analyze the function and pathway
associations of the input miRNAs, because these functional
annotations are only available at the mature miRNA level
in miEAA (18). Unfortunately, however, no additional func-
tional associations of the sepsis biomarkers were obtained.
We noted that the function and pathway annotations used
by miEAA were largely derived from miRNA target genes,
which would be of insufficient accuracy to produce promi-
nent results (9). Finally, miEAA did not enable the analy-
sis of up-/down-miRNAs separately, and this function, as
what we will show in the next sub-section, could provide ad-
ditional interesting hypothesis in biomedical applications.

Example for using the miRNA set comparison analysis

In TAM 2.0, the correlations between the input de-
regulated miRNAs and the de-regulated miRNAs in other
disease conditions could also be assessed. Intuitively, a posi-
tive correlation with disease miRNAs would indicate poten-
tial deleterious changes of miRNA expression, while a nega-
tive correlation with disease miRNAs would suggest benefi-
cial or protective effects. This novel function for miRNA set
analysis would be useful for several biomedical applications
like drug repositioning and discovery of novel gene-disease
association, just like the Connectivity Map that is widely
used for comparing expression changes of coding genes
(25). Here as an example, we obtained 23 up-regulated and
25 down-regulated miRNAs (human homologs) after met-
formin intervention of non-alcoholic steatohepatitis mouse
model from the previous study (28). We found that the
de-regulated miRNAs after metformin intervention exhibit
negative correlations with several types of cancers (Figure
2E), implying the anti-cancer potential of metformin. For
example, the comparison analysis demonstrates noticeable
negative correlations with pleural mesothelioma and gastric
adenocarcinoma. Indeed, experimental evidence for met-
formin’s anti-mesothelioma and anti-gastric carcinoma ef-
fects is accumulating in recent years (29,30), which suggests
the repurposing potential of metformin as an anti-cancer
drug.

DISCUSSION

Here we present the updated online miRNA set enrich-
ment tool TAM 2.0. The improvement of TAM 2.0 should
largely attribute to the efforts in manual data curation. With
the miRNA sets in more details (e.g. stratifying by up-
and down-miRNAs) and higher quality, a more compre-
hensive analysis of the disease- and function-associations
of miRNAs has become possible. As illustrated above, the
user would benefit from higher coverage of the curated
miRNA sets during hypothesis generation and result in-
terpretation. The correlation analysis of de-regulated miR-
NAs, which is based on the manually curated disease-
promoting (or disease-activated) miRNAs and disease-

suppressing (or disease-inhibited) miRNAs, could also pro-
vide additional biomedical implication that is not readily
available for simple overrepresentation analysis (e.g., im-
plication for drug repurposing). Finally, TAM 2.0 is also
equipped with miRNA set query and graphical visualiza-
tion functions which make the server more user-friendly
than previous TAM.

Nevertheless, it should be also noted that TAM 2.0 and
other miRNA set enrichment tools like miSEA and miEAA
are not mutually exclusive but functionally complementary.
For example, miSEA and miEAA provide GSEA-like statis-
tics which is not available for TAM 2.0. If the users wish
to take the expression values (or ranks thereof) into con-
sideration, they would refer to these web servers instead.
If the users focus on the correlation between de-regulated
miRNAs in different conditions, TAM 2.0 should be a bet-
ter choice. Besides, there are several more advanced enrich-
ment analysis methods that have been demonstrated helpful
for gene set analyses, e.g. gene set clustering (6), compar-
ative enrichment analysis (8) and network-based analysis
(31). Although the validity and usefulness of these meth-
ods in miRNA set analysis remain unchecked, it should
be the future direction to further improve the functionality
of the tool. Finally, manually curated data from publica-
tions are prone to be biased by the experiment designs, e.g.
the onco-miRNAs and tumor suppressor miRNAs over-
whelmed others in current TAM 2.0 dataset, and the exper-
imental data are of various quality and may include arte-
facts. For now, TAM 2.0 provides options to mask cancer-
related and non-standard miRNA terms when performing
analyses. Nevertheless, more high-throughput functional
screens of miRNAs are continuously in demand to provide
less biased evaluation of miRNA-function associations.

Finally, there are several clear caveats or limitations of the
current TAM 2.0. First, we only performed manual curation
on the publications from January 2014 to October 2017,
as the publication before 2013 was assumed to be covered
by TAM 1.0 and the HMDD database behinds it. How-
ever, there are indeed some important publications that had
been overlooked by the HMDD database, which turns out
to limit the comprehensiveness of our miRNA sets. Cur-
rently, we have a project with the collaboration from the
HMDD team to re-curate such historic publication data.
This project is assumed to be done within this year and
the updated miRNA set will become available with the next
major update of TAM 2.0. Second, although the PubMed
IDs are supplied for our manually curated data, no evi-
dence code is provided to evaluate the confidence of the
associations. We note that the HMDD team is also man-
aging to update their evidence code of publication data, so
that we can also incorporate their new evidence classifica-
tion when it becomes accessible. Third, because many pub-
lications actually described the function of miRNA genes
(pre-miRNAs) but did not specify the mature miRNAs, the
TAM 2.0 actually works on human miRNA genes (pre-
miRNAs) rather than mature miRNAs to ensure the data
coverage and compatibility. Nevertheless, this is indeed a
compromise between precision and coverage of the miRNA
sets. One solution for this issue is to compile new miRNA
sets from the public transcriptome data (where the mature
miRNAs are specified) and provide a new function module
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for analyzing or comparing the transcriptome-derived ma-
ture miRNA sets. In all, we hope the coverage and quality of
TAM 2.0 data will be further improved after several rounds
of updates in the near future.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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